3.663 \(\int \frac {\sqrt {d+e x}}{(f+g x)^3 \sqrt {a d e+(c d^2+a e^2) x+c d e x^2}} \, dx\)

Optimal. Leaf size=213 \[ \frac {3 c^2 d^2 \tan ^{-1}\left (\frac {\sqrt {g} \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{\sqrt {d+e x} \sqrt {c d f-a e g}}\right )}{4 \sqrt {g} (c d f-a e g)^{5/2}}+\frac {3 c d \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{4 \sqrt {d+e x} (f+g x) (c d f-a e g)^2}+\frac {\sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{2 \sqrt {d+e x} (f+g x)^2 (c d f-a e g)} \]

[Out]

3/4*c^2*d^2*arctan(g^(1/2)*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)/(-a*e*g+c*d*f)^(1/2)/(e*x+d)^(1/2))/(-a*e*g
+c*d*f)^(5/2)/g^(1/2)+1/2*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)/(-a*e*g+c*d*f)/(g*x+f)^2/(e*x+d)^(1/2)+3/4*c
*d*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)/(-a*e*g+c*d*f)^2/(g*x+f)/(e*x+d)^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.31, antiderivative size = 213, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 3, integrand size = 46, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.065, Rules used = {872, 874, 205} \[ \frac {3 c^2 d^2 \tan ^{-1}\left (\frac {\sqrt {g} \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{\sqrt {d+e x} \sqrt {c d f-a e g}}\right )}{4 \sqrt {g} (c d f-a e g)^{5/2}}+\frac {3 c d \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{4 \sqrt {d+e x} (f+g x) (c d f-a e g)^2}+\frac {\sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{2 \sqrt {d+e x} (f+g x)^2 (c d f-a e g)} \]

Antiderivative was successfully verified.

[In]

Int[Sqrt[d + e*x]/((f + g*x)^3*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2]),x]

[Out]

Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2]/(2*(c*d*f - a*e*g)*Sqrt[d + e*x]*(f + g*x)^2) + (3*c*d*Sqrt[a*d*e
+ (c*d^2 + a*e^2)*x + c*d*e*x^2])/(4*(c*d*f - a*e*g)^2*Sqrt[d + e*x]*(f + g*x)) + (3*c^2*d^2*ArcTan[(Sqrt[g]*S
qrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2])/(Sqrt[c*d*f - a*e*g]*Sqrt[d + e*x])])/(4*Sqrt[g]*(c*d*f - a*e*g)^(
5/2))

Rule 205

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]*ArcTan[x/Rt[a/b, 2]])/a, x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rule 872

Int[((d_) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))^(n_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :>
-Simp[(e^2*(d + e*x)^(m - 1)*(f + g*x)^(n + 1)*(a + b*x + c*x^2)^(p + 1))/((n + 1)*(c*e*f + c*d*g - b*e*g)), x
] - Dist[(c*e*(m - n - 2))/((n + 1)*(c*e*f + c*d*g - b*e*g)), Int[(d + e*x)^m*(f + g*x)^(n + 1)*(a + b*x + c*x
^2)^p, x], x] /; FreeQ[{a, b, c, d, e, f, g, m, p}, x] && NeQ[e*f - d*g, 0] && NeQ[b^2 - 4*a*c, 0] && EqQ[c*d^
2 - b*d*e + a*e^2, 0] &&  !IntegerQ[p] && EqQ[m + p, 0] && LtQ[n, -1] && IntegerQ[2*p]

Rule 874

Int[Sqrt[(d_) + (e_.)*(x_)]/(((f_.) + (g_.)*(x_))*Sqrt[(a_.) + (b_.)*(x_) + (c_.)*(x_)^2]), x_Symbol] :> Dist[
2*e^2, Subst[Int[1/(c*(e*f + d*g) - b*e*g + e^2*g*x^2), x], x, Sqrt[a + b*x + c*x^2]/Sqrt[d + e*x]], x] /; Fre
eQ[{a, b, c, d, e, f, g}, x] && NeQ[e*f - d*g, 0] && NeQ[b^2 - 4*a*c, 0] && EqQ[c*d^2 - b*d*e + a*e^2, 0]

Rubi steps

\begin {align*} \int \frac {\sqrt {d+e x}}{(f+g x)^3 \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}} \, dx &=\frac {\sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{2 (c d f-a e g) \sqrt {d+e x} (f+g x)^2}+\frac {(3 c d) \int \frac {\sqrt {d+e x}}{(f+g x)^2 \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}} \, dx}{4 (c d f-a e g)}\\ &=\frac {\sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{2 (c d f-a e g) \sqrt {d+e x} (f+g x)^2}+\frac {3 c d \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{4 (c d f-a e g)^2 \sqrt {d+e x} (f+g x)}+\frac {\left (3 c^2 d^2\right ) \int \frac {\sqrt {d+e x}}{(f+g x) \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}} \, dx}{8 (c d f-a e g)^2}\\ &=\frac {\sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{2 (c d f-a e g) \sqrt {d+e x} (f+g x)^2}+\frac {3 c d \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{4 (c d f-a e g)^2 \sqrt {d+e x} (f+g x)}+\frac {\left (3 c^2 d^2 e^2\right ) \operatorname {Subst}\left (\int \frac {1}{-e \left (c d^2+a e^2\right ) g+c d e (e f+d g)+e^2 g x^2} \, dx,x,\frac {\sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{\sqrt {d+e x}}\right )}{4 (c d f-a e g)^2}\\ &=\frac {\sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{2 (c d f-a e g) \sqrt {d+e x} (f+g x)^2}+\frac {3 c d \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{4 (c d f-a e g)^2 \sqrt {d+e x} (f+g x)}+\frac {3 c^2 d^2 \tan ^{-1}\left (\frac {\sqrt {g} \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{\sqrt {c d f-a e g} \sqrt {d+e x}}\right )}{4 \sqrt {g} (c d f-a e g)^{5/2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C]  time = 0.05, size = 77, normalized size = 0.36 \[ \frac {2 c^2 d^2 \sqrt {(d+e x) (a e+c d x)} \, _2F_1\left (\frac {1}{2},3;\frac {3}{2};\frac {g (a e+c d x)}{a e g-c d f}\right )}{\sqrt {d+e x} (c d f-a e g)^3} \]

Antiderivative was successfully verified.

[In]

Integrate[Sqrt[d + e*x]/((f + g*x)^3*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2]),x]

[Out]

(2*c^2*d^2*Sqrt[(a*e + c*d*x)*(d + e*x)]*Hypergeometric2F1[1/2, 3, 3/2, (g*(a*e + c*d*x))/(-(c*d*f) + a*e*g)])
/((c*d*f - a*e*g)^3*Sqrt[d + e*x])

________________________________________________________________________________________

fricas [B]  time = 0.78, size = 1283, normalized size = 6.02 \[ \text {result too large to display} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)^(1/2)/(g*x+f)^3/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2),x, algorithm="fricas")

[Out]

[-1/8*(3*(c^2*d^2*e*g^2*x^3 + c^2*d^3*f^2 + (2*c^2*d^2*e*f*g + c^2*d^3*g^2)*x^2 + (c^2*d^2*e*f^2 + 2*c^2*d^3*f
*g)*x)*sqrt(-c*d*f*g + a*e*g^2)*log(-(c*d*e*g*x^2 - c*d^2*f + 2*a*d*e*g - (c*d*e*f - (c*d^2 + 2*a*e^2)*g)*x -
2*sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)*sqrt(-c*d*f*g + a*e*g^2)*sqrt(e*x + d))/(e*g*x^2 + d*f + (e*f +
d*g)*x)) - 2*(5*c^2*d^2*f^2*g - 7*a*c*d*e*f*g^2 + 2*a^2*e^2*g^3 + 3*(c^2*d^2*f*g^2 - a*c*d*e*g^3)*x)*sqrt(c*d*
e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)*sqrt(e*x + d))/(c^3*d^4*f^5*g - 3*a*c^2*d^3*e*f^4*g^2 + 3*a^2*c*d^2*e^2*f^3
*g^3 - a^3*d*e^3*f^2*g^4 + (c^3*d^3*e*f^3*g^3 - 3*a*c^2*d^2*e^2*f^2*g^4 + 3*a^2*c*d*e^3*f*g^5 - a^3*e^4*g^6)*x
^3 + (2*c^3*d^3*e*f^4*g^2 - a^3*d*e^3*g^6 + (c^3*d^4 - 6*a*c^2*d^2*e^2)*f^3*g^3 - 3*(a*c^2*d^3*e - 2*a^2*c*d*e
^3)*f^2*g^4 + (3*a^2*c*d^2*e^2 - 2*a^3*e^4)*f*g^5)*x^2 + (c^3*d^3*e*f^5*g - 2*a^3*d*e^3*f*g^5 + (2*c^3*d^4 - 3
*a*c^2*d^2*e^2)*f^4*g^2 - 3*(2*a*c^2*d^3*e - a^2*c*d*e^3)*f^3*g^3 + (6*a^2*c*d^2*e^2 - a^3*e^4)*f^2*g^4)*x), -
1/4*(3*(c^2*d^2*e*g^2*x^3 + c^2*d^3*f^2 + (2*c^2*d^2*e*f*g + c^2*d^3*g^2)*x^2 + (c^2*d^2*e*f^2 + 2*c^2*d^3*f*g
)*x)*sqrt(c*d*f*g - a*e*g^2)*arctan(sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)*sqrt(c*d*f*g - a*e*g^2)*sqrt(e
*x + d)/(c*d*e*g*x^2 + a*d*e*g + (c*d^2 + a*e^2)*g*x)) - (5*c^2*d^2*f^2*g - 7*a*c*d*e*f*g^2 + 2*a^2*e^2*g^3 +
3*(c^2*d^2*f*g^2 - a*c*d*e*g^3)*x)*sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)*sqrt(e*x + d))/(c^3*d^4*f^5*g -
 3*a*c^2*d^3*e*f^4*g^2 + 3*a^2*c*d^2*e^2*f^3*g^3 - a^3*d*e^3*f^2*g^4 + (c^3*d^3*e*f^3*g^3 - 3*a*c^2*d^2*e^2*f^
2*g^4 + 3*a^2*c*d*e^3*f*g^5 - a^3*e^4*g^6)*x^3 + (2*c^3*d^3*e*f^4*g^2 - a^3*d*e^3*g^6 + (c^3*d^4 - 6*a*c^2*d^2
*e^2)*f^3*g^3 - 3*(a*c^2*d^3*e - 2*a^2*c*d*e^3)*f^2*g^4 + (3*a^2*c*d^2*e^2 - 2*a^3*e^4)*f*g^5)*x^2 + (c^3*d^3*
e*f^5*g - 2*a^3*d*e^3*f*g^5 + (2*c^3*d^4 - 3*a*c^2*d^2*e^2)*f^4*g^2 - 3*(2*a*c^2*d^3*e - a^2*c*d*e^3)*f^3*g^3
+ (6*a^2*c*d^2*e^2 - a^3*e^4)*f^2*g^4)*x)]

________________________________________________________________________________________

giac [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)^(1/2)/(g*x+f)^3/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2),x, algorithm="giac")

[Out]

Timed out

________________________________________________________________________________________

maple [A]  time = 0.02, size = 285, normalized size = 1.34 \[ -\frac {\sqrt {c d e \,x^{2}+a \,e^{2} x +c \,d^{2} x +a d e}\, \left (3 c^{2} d^{2} g^{2} x^{2} \arctanh \left (\frac {\sqrt {c d x +a e}\, g}{\sqrt {\left (a e g -c d f \right ) g}}\right )+6 c^{2} d^{2} f g x \arctanh \left (\frac {\sqrt {c d x +a e}\, g}{\sqrt {\left (a e g -c d f \right ) g}}\right )+3 c^{2} d^{2} f^{2} \arctanh \left (\frac {\sqrt {c d x +a e}\, g}{\sqrt {\left (a e g -c d f \right ) g}}\right )-3 \sqrt {\left (a e g -c d f \right ) g}\, \sqrt {c d x +a e}\, c d g x +2 \sqrt {\left (a e g -c d f \right ) g}\, \sqrt {c d x +a e}\, a e g -5 \sqrt {\left (a e g -c d f \right ) g}\, \sqrt {c d x +a e}\, c d f \right )}{4 \sqrt {e x +d}\, \sqrt {c d x +a e}\, \left (a e g -c d f \right )^{2} \left (g x +f \right )^{2} \sqrt {\left (a e g -c d f \right ) g}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((e*x+d)^(1/2)/(g*x+f)^3/(c*d*e*x^2+a*d*e+(a*e^2+c*d^2)*x)^(1/2),x)

[Out]

-1/4*(c*d*e*x^2+a*e^2*x+c*d^2*x+a*d*e)^(1/2)*(3*arctanh((c*d*x+a*e)^(1/2)/((a*e*g-c*d*f)*g)^(1/2)*g)*x^2*c^2*d
^2*g^2+6*arctanh((c*d*x+a*e)^(1/2)/((a*e*g-c*d*f)*g)^(1/2)*g)*x*c^2*d^2*f*g+3*arctanh((c*d*x+a*e)^(1/2)/((a*e*
g-c*d*f)*g)^(1/2)*g)*c^2*d^2*f^2-3*((a*e*g-c*d*f)*g)^(1/2)*(c*d*x+a*e)^(1/2)*x*c*d*g+2*((a*e*g-c*d*f)*g)^(1/2)
*(c*d*x+a*e)^(1/2)*a*e*g-5*((a*e*g-c*d*f)*g)^(1/2)*(c*d*x+a*e)^(1/2)*c*d*f)/(e*x+d)^(1/2)/(c*d*x+a*e)^(1/2)/(a
*e*g-c*d*f)^2/(g*x+f)^2/((a*e*g-c*d*f)*g)^(1/2)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\sqrt {e x + d}}{\sqrt {c d e x^{2} + a d e + {\left (c d^{2} + a e^{2}\right )} x} {\left (g x + f\right )}^{3}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)^(1/2)/(g*x+f)^3/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2),x, algorithm="maxima")

[Out]

integrate(sqrt(e*x + d)/(sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)*(g*x + f)^3), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.00 \[ \int \frac {\sqrt {d+e\,x}}{{\left (f+g\,x\right )}^3\,\sqrt {c\,d\,e\,x^2+\left (c\,d^2+a\,e^2\right )\,x+a\,d\,e}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((d + e*x)^(1/2)/((f + g*x)^3*(x*(a*e^2 + c*d^2) + a*d*e + c*d*e*x^2)^(1/2)),x)

[Out]

int((d + e*x)^(1/2)/((f + g*x)^3*(x*(a*e^2 + c*d^2) + a*d*e + c*d*e*x^2)^(1/2)), x)

________________________________________________________________________________________

sympy [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)**(1/2)/(g*x+f)**3/(a*d*e+(a*e**2+c*d**2)*x+c*d*e*x**2)**(1/2),x)

[Out]

Timed out

________________________________________________________________________________________